2.6 版新增。
The numbers 模块 ( PEP 3141 ) 定义层次结构为数值 抽象基类 which progressively define more operations. None of the types defined in this module can be instantiated.
The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring what kind, use isinstance(x, Number) .
Subclasses of this type describe complex numbers and include the operations that work on the built-in complex type. These are: conversions to complex and bool , real , imag , + , - , * , / , abs() , conjugate() , == ,和 != . All except - and != are abstract.
Abstract. Retrieves the real component of this number.
Abstract. Retrieves the imaginary component of this number.
Abstract. Returns the complex conjugate. For example, (1+3j).conjugate() == (1-3j) .
到 Complex , Real adds the operations that work on real numbers.
In short, those are: a conversion to float , math.trunc() , round() , math.floor() , math.ceil() , divmod() , // , % , < , <= , > ,和 >= .
Real also provides defaults for complex() , real , imag ,和 conjugate() .
子类型 Real and adds numerator and denominator properties, which should be in lowest terms. With these, it provides a default for float() .
抽象。
抽象。
子类型 Rational and adds a conversion to int . Provides defaults for float() , numerator ,和 denominator . Adds abstract methods for ** and bit-string operations: << , >> , & , ^ , | , ~ .
Implementors should be careful to make equal numbers equal and hash them to the same values. This may be subtle if there are two different extensions of the real numbers. For example, fractions.Fraction 实现 hash() 如下:
def __hash__(self): if self.denominator == 1: # Get integers right. return hash(self.numerator) # Expensive check, but definitely correct. if self == float(self): return hash(float(self)) else: # Use tuple's hash to avoid a high collision rate on # simple fractions. return hash((self.numerator, self.denominator))
There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the possibility of adding those. You can add MyFoo between Complex and Real 采用:
class MyFoo(Complex): ... MyFoo.register(Real)
We want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there. For subtypes of Integral , this means that __add__() and __radd__() should be defined as:
class MyIntegral(Integral): def __add__(self, other): if isinstance(other, MyIntegral): return do_my_adding_stuff(self, other) elif isinstance(other, OtherTypeIKnowAbout): return do_my_other_adding_stuff(self, other) else: return NotImplemented def __radd__(self, other): if isinstance(other, MyIntegral): return do_my_adding_stuff(other, self) elif isinstance(other, OtherTypeIKnowAbout): return do_my_other_adding_stuff(other, self) elif isinstance(other, Integral): return int(other) + int(self) elif isinstance(other, Real): return float(other) + float(self) elif isinstance(other, Complex): return complex(other) + complex(self) else: return NotImplemented
There are 5 different cases for a mixed-type operation on subclasses of Complex . I’ll refer to all of the above code that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance of A , which is a subtype of Complex ( a : A <: Complex ),和 b : B <: Complex . I’ll consider a + b :
若 A <: Complex and B <: Real without sharing any other knowledge, then the appropriate shared operation is the one involving the built in complex , and both __radd__() s land there, so a+b == b+a .
Because most of the operations on any given type will be very similar, it can be useful to define a helper function which generates the forward and reverse instances of any given operator. For example, fractions.Fraction 使用:
def _operator_fallbacks(monomorphic_operator, fallback_operator): def forward(a, b): if isinstance(b, (int, long, Fraction)): return monomorphic_operator(a, b) elif isinstance(b, float): return fallback_operator(float(a), b) elif isinstance(b, complex): return fallback_operator(complex(a), b) else: return NotImplemented forward.__name__ = '__' + fallback_operator.__name__ + '__' forward.__doc__ = monomorphic_operator.__doc__ def reverse(b, a): if isinstance(a, Rational): # Includes ints. return monomorphic_operator(a, b) elif isinstance(a, numbers.Real): return fallback_operator(float(a), float(b)) elif isinstance(a, numbers.Complex): return fallback_operator(complex(a), complex(b)) else: return NotImplemented reverse.__name__ = '__r' + fallback_operator.__name__ + '__' reverse.__doc__ = monomorphic_operator.__doc__ return forward, reverse def _add(a, b): """a + b""" return Fraction(a.numerator * b.denominator + b.numerator * a.denominator, a.denominator * b.denominator) __add__, __radd__ = _operator_fallbacks(_add, operator.add) # ...